> rts!` bjbj\\ UF>>
28, 2+\ m!m!m!d[f[f[f[f[f[f[$^h`[m!m!m!m!m![ [PE#E#E#m!R d[E#m!d[E#E#Ul0Z @ēbD!RTW*Z[<+\~W]a"]aT0Z]a0Zpm!m!E#m!m!m!m!m![["Rm!m!m!+\m!m!m!m!2222222Assessment Task Plan
Year 7 Mathematics How Fit Are You? Unit overview
This unit requires students to understand what data and mathematical calculations are required to make judgements about ones personal fitness. Records of students physical activity, including heart rates and recovery times, are used to prepare tables and graphs that illustrate levels of fitness. The calculation of mean, median and mode will assist students to make statements about their own personal fitness and to make comparisons between their level of fitness and that of the whole class.
Curriculum intentWays of Working
Select and use suitable mental and written computations, estimations, representations and technologies to generate solutions and to check for reasonableness.
Evaluate thinking and reasoning to determine whether mathematical ideas, strategies and procedures have been applied effectively.
Communicate thinking and justify reasoning and generalizations, using mathematical language, representations and technologies.
Reflect on and identify the contribution of mathematics to their life.
.
Knowledge and Understanding
Data can be summarised and represented to support inferences and conclusions
Measures of location such as mean, median and mode, and frequency and relative frequency, can be used to explore distributions of sample data
Sample data drawn from a given population can be summarised, compared and represented in a variety of ways
Assessable elements
Knowledge and understanding
Thinking and reasoning
Communication
ReflectingWhat deep understandings are desired?
The desired result is for learners to understand that:
Mathematical data, in the form of activity rates, heart rates and recovery time, can be used to evaluate personal fitness levels
Measures of location can be used to support inferences and conclusions about data
Representations of data, such as tables and graphs, aids used in interpreting a range of data
What essential questions will guide the inquiry?
What data and mathematics can I use to determine a report about my overall fitness?
What mathematical calculations will be useful in analysing my fitness?
What key knowledge and skills will students acquire as a result of this unit?
Students will know:
Rate is a comparison of two different measurements e.g. heart rate and recovery rate
Tables and graphs can be used to display data
Mean, median and mode are measures of location
Sample data can be summarised, compared and analysed
Students will be able to:
Calculate their heart rate before and after an activity
Calculate the speed of recovery after an activity
Create a table and record raw scores
Choose a suitable graphical representation and convert data tables into graphs
Create a frequency distribution chart
Check the reasonableness of calculations
Make inferences and draw conclusions from the data
Make statements about using mathematical calculations and graphs to describe aspects of daily life
Assessment what evidence of student understanding is needed?
Record raw scores as a data table
Create a frequency distribution chart
Calculate mean, median and mode
Create graphs from the table data
Make inferences and draw conclusions using the data and mathematical reasoningAssessment task outline
The assessment will require students to present a personal report which includes tables and graphs showing their overall fitness. The report should display mathematical calculations of mean, median and mode and frequency distributions of class scores which provide information from which comparisons and conclusions can be made against personal scores.
Literacy demands: moderate
Numeracy demands: The meaning of rate. Conventions used when constructing tables and graphs. Mathematics concepts that will be useful when analysing data.
Explicit teaching required
Discuss how mathematics might be used to help you determine your fitness level
What mathematics might you need to do?
What data might be useful?
Calculating heart rate and speed of recovery
Displaying data in different ways including tables and graphs
Calculating mean, median and mode
Making inferences and drawing conclusions using mathematical reasoning and information from tables and graphs
9;HIJK;
<
=
>
?
P
R
b
IJKMiC
D
ŽsksŲkh{CJaJ)h{5B*CJOJQJ\^JaJphIf)h{5B*CJ OJQJ\^JaJ phIf)h5B*CJ OJQJ\^JaJ phIfhhCJaJh{CJaJhh{CJaJhCJaJhh{6/hh6B*CJ OJQJ\^JaJ phIfhh{#:;Iob
$#&P#$/Ifqkd$$IflD%]&
t
6P#0]&644
la$#&P#$/Ifgd
$#&P#$/IfIJK<
=
{{{$$#&P#$/Ifa$gdqkd$$Ifl%]&
t
6P#0]&644
la=
>
?
Q
||$#&P#$/7$8$H$IfqkdH$$Ifl%]&
t
6P#0]&644
laQ
R
b
KMi|vvvvvvvvk
$7$8$H$If$If$#&P#$/7$8$H$Ifqkd$$Ifl>%]&
t
6P#0]&644
laiD
$7$8$H$If$#&P#$/7$8$H$If$If
&F
L$If^`Lgd
:>CD'(Gmopqžܳܳܫܳܫܘ܍܍܂ܫ܂ܘhh,Z7CJaJhhJXCJaJh{CJaJhhe*1CJaJhCJaJhh(&CJaJh{5\h{hhCJaJh{CJaJhh{CJaJ/hh{5B*CJOJQJ\^JaJphIf.:qD}kaGGGA$If
&F
L$If^`Lgd
$If$#&P#$/7$8$H$Ifkd$$Ifl0%x
t
6P#0]&644
la(opqT=$.&#$/7$8$H$Ifgdl+kd"$$Ifl %]&
t
6P#
0]&644
lap
ytl+$If
&F
0$If`0gd
$7$8$H$If(W@e6
&F
0$.&#$/If`0gdl+
&F
0$.&#$/If`0gdl+$.&#$/Ifgdl+
')IRSTVWxy @Ee6BDd/01B¾辦荾h{CJOJQJ^JaJhh{CJaJ/hh{5B*CJOJQJ\^JaJphIfh{hhCJaJh{CJaJhCJaJhh|6CJaJhh{CJaJhh{5CJaJ2"BdrQQQQQ!
&F
L$.&#$/If^`Lgdl+$.&#$/7$8$H$Ifgdl+vkd$$Ifl**
t
6.0*644
laytl+/0wbw$$.&#$/Ifa$gdl+$.&#$/Ifgdl+vkdo$$Ifl**
t
6.0*644
laytl+01LrYYx$.&#$/7$8$H$Ifgdl+$.&#$/7$8$H$Ifgdl+vkd$$Iflt**
t
6.0*644
laytl+BCKL]_su7V}yujbjbWbLAWLWhh=CJaJhhN-CJaJhh{CJaJhl+CJaJhh_CJaJh{hhCJ\^JaJhN-CJ\^JaJhCJ\^JaJhhN-CJ\^JaJ)h5B*CJOJQJ\^JaJphIf/hh{5B*CJOJQJ\^JaJphIf#hh{CJOJQJ\^JaJ )h{5B*CJ OJQJ\^JaJ phIfV~rSSS
&F
0$.&#$/If`0gdl+$.&#$/7$8$H$Ifgdl+vkd$$Ifl**
t
6.0*644
laytl+&n$.&#$/Ifgdl+
&F
0$.&#$/If`0gdl+`
&F
0$.&#$/EƀǂFIf`0gdl+&hLdjhLdUh{hl+hl+CJaJh{CJaJhh{CJaJhl+CJaJvkd:$$Ifl**
t
6.0*644
laytl+X`XS&P1h0] A!"#7$7%P0$$If!vh5]&#v]&:VlD
t
6P#0]&65]&/$$If!vh5]&#v]&:Vl
t
6P#0]&65]&//$$If!vh5]&#v]&:Vl
t
6P#0]&65]&/$$If!vh5]&#v]&:Vl>
t
6P#0]&65]&/
$$If!vh5x5#vx#v:Vl
t
6P#0]&65x5$$If!vh5]&#v]&:Vl
t
6P#
0]&65]&p
ytl+$$If!vh5*#v*:Vl
t
6.0*65*ytl+$$If!vh5*#v*:Vl
t
6.0*65*ytl+$$If!vh5*#v*:Vlt
t
6.0*65*ytl+$$If!vh5*#v*:Vl
t
6.0*65*ytl+$$If!vh5*#v*:Vl
t
6.0*65*ytl+H@HNormal CJOJQJ_HaJmH sH tH R@R Heading 1$<@&5CJ KH \^JaJ T@T Heading 2$<@&56CJ\]^JaJN@N Heading 3$<@&5CJ\^JaJDA@DDefault Paragraph FontVi@VTable Normal :V44
la(k@(No ListH@H0.
Balloon TextCJOJQJ^JaJ4@4Header
9r B'@B|6Comment ReferenceCJaJ<@"<|6Comment TextCJaJ@j@!"@|6Comment Subject5\4 @B41KFooter
9r F00X>%13Es j00|@0 0:;IJK<=>?QRbKMiD:qD(opq( W
@
e
6"Bd/01LV~&00 0 0 0 000 0 00 0 0000000000 0 0 00 00000000 0 00
0
0
000 0 00 0 00 0 0 0 000 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 000 0 000 0 0 0 0 0 0 0 0 00 0 00000000000000000000000(0000000000000000000000@000@000@000@00000+:;IJ=>QRbKMi:qopq /01L0 0 0 0 0 0 0 0 000000000000 00000 0 0000000 0 @0@0@0@0@0@0 @0@0@0 @0@0@0@0 @0@0@0 @0@00
07@0!j00
B
I=
Q
i0 !"8@0(
B
S ?qqUUVV}~%&vd2nXyj,*2Na
btFau`"LxRiJR"hER$VQRpq01@<
.@{@UnknownWindows XP Corporate SOE 3.9Gz Times New Roman5Symbol3&z ArialI MetaBoldLF-RomanA&Arial Narrow5&zaTahoma?5 z Courier New;Wingdings"1hbfbf"FCC!74d2qHX ?0.
24Assessment Task Year 7 Mathematics How Fit Are Youtmgla0Windows XP Corporate SOE 3.9T
Oh+'0 8D
dp|
8Assessment Task Year 7 Mathematics How Fit Are Youtmgla0Normal Windows XP Corporate SOE 3.92Microsoft Office Word@Ik@쬤@@ыbD@@ыbDC՜.+,00hp
Education Queenslandd5Assessment Task Year 7 Mathematics How Fit Are YouTitle
!"#%&'()*+-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\^_`abcdfghijkloRoot Entry F ɚbDqData
$1Table,aWordDocumentUFSummaryInformation(]DocumentSummaryInformation8eCompObjq
FMicrosoft Office Word Document
MSWordDocWord.Document.89qRoot Entry F!́w@Data
$1Table,aWordDocumentUF
!"#%&'()*+-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\^_`abcdvu $, SummaryInformation(]DocumentSummaryInformation8CompObjq
FMicrosoft Office Word Document
MSWordDocWord.Document.89q՜.+,D՜.+,t0hp
Education Queenslandd5Assessment Task Year 7 Mathematics How Fit Are YouTitle4